• English
Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • FAQ

Leibniz International Proceedings in Informatics (LIPIcs)

Filtern

Volltext vorhanden

  • ja (1)

Erscheinungsjahr

  • 2024 (1)

Dokumenttyp

  • Wissenschaftlicher Artikel (1)

Institut

  • Physikalische Technik, Informatik (1)

Sprache

  • Deutsch (1)

Autor*in

  • Beisegel, Jesse (1)
  • Köhler, Ekkehard (1)
  • Ratajczak, Fabienne (1)
  • Scheffler, Robert (1)
  • Strehler, Martin (1)

Gehört zur Bibliographie

  • ja (1)

1 Treffer

  • 1 bis 1
  • 10
  • 20
  • 50
  • 100
306
Graph Search Trees and the Intermezzo Problem (2024)
Beisegel, Jesse ; Köhler, Ekkehard ; Ratajczak, Fabienne ; Scheffler, Robert ; Strehler, Martin
The last in-tree recognition problem asks whether a given spanning tree can be derived by connecting each vertex with its rightmost left neighbor of some search ordering. In this study, we demonstrate that the last-in-tree recognition problem for Generic Search is NP-complete. We utilize this finding to strengthen a complexity result from order theory. Given a partial order π and a set of triples, the NP-complete intermezzo problem asks for a linear extension of π where each first element of a triple is not between the other two. We show that this problem remains NP-complete even when the Hasse diagram of the partial order forms a tree of bounded height. In contrast, we give an XP-algorithm for the problem when parameterized by the width of the partial order. Furthermore, we show that - under the assumption of the Exponential Time Hypothesis - the running time of this algorithm is asymptotically optimal. LIPIcs, Vol. 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024), pages 22:1-22:18
  • 1 bis 1

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks